

Spectroscopic Identification of Oxonium and Carbenium Ions of Protonated Phenol in the Gas Phase: IR Spectra of Weakly Bound $C_6H_7O^+$ -L Dimers (L = Ne, Ar, N₂)

Nicola Solcà and Otto Dopfer*

Contribution from the Institute for Physical Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany

Received October 11, 2003; E-mail: dopfer@phys-chemie.uni-wuerzburg.de

Abstract: Structural isomers of isolated protonated phenol (C₆H₇O⁺) are characterized by infrared (IR) photodissociation spectroscopy of their weakly bound complexes with neutral ligands L (L = Ne, Ar, N₂). IR spectra of $C_6H_7O^+-L$ recorded in the vicinity of the O-H and C-H stretch fundamentals carry unambiguous signatures of at least two C₆H₇O⁺ isomers: the identified protonation sites of phenol include the O atom (oxonium ion, O-C₆H₇O⁺) and the C atoms of the aromatic ring in the ortho and/or para position (carbenium ions, o/p-C₆H₇O⁺). In contrast, protonation at the *meta* and *ipso* positions is not observed. The most stable C₆H₇O⁺-L dimer structures feature intermolecular H-bonds between L and the OH groups of O-C₆H₇O⁺ and o/p-C₆H₇O⁺. Extrapolation to zero solvation interaction yields reliable experimental vibrational frequencies of bare $O-C_6H_7O^+$ and $o/p-C_6H_7O^+$. The interpretation of the $C_6H_7O^+-L$ spectra, as well as the extrapolated monomer frequencies, is supported by B3LYP and MP2 calculations using the 6-311G-(2df,2pd) basis. The spectroscopic and theoretical results elucidate the effect of protonation on the structural properties of phenol and provide a sensitive probe of the activating and ortho/para directing nature of the OH group observed in electrophilic aromatic substitution reactions.

1. Introduction

The characterization of reactive intermediates is of fundamental interest in organic chemistry, because information about structural and energetic properties of such transient species is required to understand and possibly control the dynamics and selectivity of chemical processes.¹⁻³ Protonated aromatic molecules (AH⁺) are pivotal intermediates in electrophilic aromatic substitution (EAS) reactions, one of the most important reaction mechanisms of aromatic molecules. The elucidation of mechanistic details of EAS reactions by characterizing AH⁺ is a challenging and active area of research.⁴ In addition, protonation and deprotonation of aromatic molecules are important biochemical processes.⁵ In the condensed phase, AH⁺ has mainly been investigated by NMR, IR, and UV-vis spectroscopy, as well as X-ray crystallography.⁶⁻¹⁰ Although these studies have characterized solvated AH⁺, they revealed that many of their

- (1) March, J. Advanced Organic Chemistry: Reactions, Mechanisms, and Structure; Wiley: New York, 1992
- (2) Carey, F. A.; Sundberg, R. J. Advanced Organic Chemistry; Plenum Press: New York, 1993.
- (3) Ohtaki, H.; Radnai, T. Chem. Rev. 1993, 93, 1157.
 (4) Lenoir, D. Angew. Chem., Int. Ed. 2003, 42, 854.
 (5) Jeffrey, G. A.; Saenger, W. Hydrogen Bonding in Biological Systems; Springer: Heidelberg, 1991.
- (6) Perkampus, H. H.; Baumgarten, E. Angew. Chem., Int. Ed. Engl. 1964, 3, 776
- (7) Brouwer, D. M.; Mackor, E. L.; MacLean, C. Arenonium Ions. In Carbonium Ions; Olah, G. A., Schleyer, P. v. R., Eds.; Wiley: New York, 1970: Vol. II.
- (8)Dewey, T. X.; Barich, H.; Torres, P. D.; Haw, J. F. J. Am. Chem. Soc. 1997, 119, 406.
- (9) Hubig, S. M.; Kochi, J. K. J. Org. Chem. 2000, 65, 6807.
- (10) Reed, C. A.; Kim, K. C.; Stoyanov, E. S.; Stasko, D.; Tham, F. S.; Mueller, L. J.; Boyd, P. D. W. J. Am. Chem. Soc. 2003, 125, 1796.

properties strongly depend on the environment (such as solvent molecules or counterions).¹¹ For example, the preference for protonation of phenol (C_6H_6O) at the aromatic ring or at the OH group studied by low-temperature NMR spectroscopy shows a drastic solvent and temperature dependence.¹²

Gas-phase studies are required to separate intrinsic molecular properties from interfering solvation effects.^{13–17} To date, nearly all investigations of isolated AH⁺ are based on mass spectrometric or theoretical techniques. Structural characterization via mass spectrometry is, however, indirect, often disputable, and only in a few cases unambiguous.^{14,15} On the other hand, spectroscopic techniques (and in particular IR spectroscopy) can be sensitive tools to unambiguously determine protonation site(s) in AH⁺. Early unstructured electronic spectra of AH⁺ trapped in an ICR cell did not provide any isomer-specific information of isolated AH⁺.^{18,19} Recently, structured IR spectra of AH⁺ (cluster) ions were recorded for the first time to yield unambiguous information about the protonation sites of AH⁺ in the gas phase observed under controlled solvation conditions. The systems investigated so far include protonated benzene

- (11) Esteves, P. M.; de M. Carneiro, J. W.; Cardoso, S. P.; Barbosa, A. G. H.; Laali, K. K.; Rasul, G.; Prakash, G. K. S.; Olah, G. A. J. Am. Chem. Soc. 2003, 125, 4836.
- (12) Olah, G. A.; Mo, Y. K. J. Org. Chem. **1973**, 38, 3.
 (13) Weinkauf, R.; Schermann, J. P.; de Vries, M. S.; Kleinermanns, K. Eur. Phys. J. D 2002, 20, 309.
- (14) Speranza, M. Mass Spectrom. Rev. 1992, 73.
- (15) Kuck, D. Mass Spectrom. Rev. 1990, 583.
- (16) Fornarini, S. Mass Spectrom. Rev. 1997, 365.
- (17) Fornarini, S.; Crestoni, M. E. Acc. Chem. Res. 1998, 31, 827.
 (18) Freiser, B. S.; Beauchamp, J. L. J. Am. Chem. Soc. 1976, 98, 3136.
 (19) Freiser, B. S.; Beauchamp, J. L. J. Am. Chem. Soc. 1977, 99, 3214.

(C₆H₇⁺),²⁰⁻²² protonated phenol (C₆H₇O⁺),²³ and protonated fluorobenzene $(C_6H_6F^+)$.^{24,25} All of these investigations are based on sensitive IR photodissociation (IRPD) techniques, which overcome the problems of producing sufficient ion concentrations required for spectroscopic experiments.²⁶

IRPD spectroscopy exploits the fragmentation of a (cluster) ion after resonant absorption of one or more IR photons. For AH⁺ ions with a low appearance potential for the lowest dissociation channel, IRPD can be achieved under single photon absorption conditions. For example, the fluoronium isomer of $C_6H_6F^+$ (F-C₆H₆F⁺) was selectively detected by IRPD into $C_6H_5^+$ and HF upon absorption of one IR photon in the 3 μ m range:24

$$F-C_6H_6F^+ + \nu_{IR} \rightarrow C_6H_5^+ + HF$$
(1)

The more stable carbenium ions of C₆H₆F⁺, C-C₆H₆F⁺, were not detected in this experiment, because the energy of a single IR photon is insufficient to break any of their strong covalent bonds.²⁴ Alternatively, spectral features of AH⁺ can also be inferred by adopting the "messenger" approach,^{26,27} in which properties of molecular ions are derived from the characterization of their weakly bound clusters with one or more neutral ligands L, AH⁺-L_n.^{20,21,23,25} This approach relies on the fact that either L has only a negligible influence on the properties of AH⁺ or, if this is not the case, that the intermolecular interaction can be tuned by variation of L (or n) and finally extrapolated to zero (controlled solvation).^{26,28-30} The main experimental advantage of the messenger approach is that inert and nonpolar ligands L (such as rare gas atoms or N₂) in AH^+-L_n can usually be evaporated after resonant absorption of a single IR photon, because the photon energy is sufficient to break the weak intermolecular bonds. For example, the IR spectrum of certain C-C₆H₆F⁺ isomers could selectively be derived by IRPD of their weakly bound $C-C_6H_6F^+-(N_2)_2$ clusters:²⁵

$$C - C_6 H_6 F^+ - (N_2)_2 + \nu_{IR} \rightarrow C_6 H_6 F^+ + 2N_2$$
 (2)

Finally, IRPD of a bare AH⁺ ion with a high appearance potential for its lowest dissociation channel can also be induced by sequential absorption of several IR photons. For example, the IRPD spectrum of bare $C_6H_7^+$ was recently obtained by monitoring resonant multiphoton dehydrogenation:²²

$$C_6 H_7^+ + n\nu_{IR} \rightarrow C_6 H_5^+ + H_2 \quad (n \ge 10)$$
 (3)

Such a process requires high IR laser intensities which are provided, for example, by modern free electron lasers.²²

The present work reports IRPD spectra of protonated phenol $(C_6H_7O^+)$ complexed with a single weakly bound inert ligand L (L = Ne, Ar, N_2) in the vicinity of the O-H and C-H stretch

- (20) Solcà, N.; Dopfer, O. Angew. Chem., Int. Ed. 2002, 41, 3628.
 (21) Solcà, N.; Dopfer, O. Chem.-Eur. J. 2003, 9, 3154.
- Jones, W., Boissel, P.; Chiavarino, B.; Crestoni, M. E.; Fornarini, S.; Lemaire, J.; Maitre, P. Angew. Chem., Int. Ed. 2003, 42, 2057. (22)
- (23) Solcà, N.; Dopfer, O. Chem. Phys. Lett. 2003, 42, 191.
 (24) Solcà, N.; Dopfer, O. J. Am. Chem. Soc. 2003, 125, 1421.
 (25) Solcà, N.; Dopfer, O. Angew. Chem., Int. Ed. 2003, 42, 1537.
 (26) Bieske, E. J.; Dopfer, O. Chem. Rev. 2000, 100, 3963.
- (27) Yeh, L. I.; Okumura, M.; Myers, J. D.; Price, J. M.; Lee, Y. T. J. Chem.
- Phys. 1989, 91, 7319. (28) Nizkorodov, S. A.; Roth, D.; Olkhov, R. V.; Maier, J. P.; Dopfer, O. Chem. Phys. Lett. 1997, 278, 26–30.
- (29) Olkhov, R. V.; Dopfer, O. Chem. Phys. Lett. 1999, 314, 215.
 (30) Solcà, N.; Dopfer, O. J. Phys. Chem. A 2001, 105, 5637.

Figure 1. Sketch of possible $x-C_6H_7O^+$ ions and selected $x-C_6H_7O^+-L$ complexes. Protonation of phenol may occur at the aromatic ring in ortho (x = o), meta (x = m), para (x = p), and ipso (x = i) positions to form stable carbenium ions (1-4) or at the oxygen atom (x = 0) to form the oxonium ion (5). Trans and cis isomers of the OH group with respect to the aliphatic CH₂ moiety are possible for o-C₆H₇O⁺ and m-C₆H₇O⁺ (**1a/b**, **2a/b**). Major binding sites of ligands L to $x-C_6H_7O^+$ include H-bonding and π -bonding. As an example, H-bound p-C₆H₇O⁺-L, 3-L(H), and π -bound *p*-C₆H₇O⁺-L, **3**-L(π), are shown.

fundamentals. It complements our preliminary IRPD investigation of C₆H₇O⁺-Ar_{1,2} in the O-H stretch range.²³ Possible $x-C_6H_7O^+$ structures are illustrated in Figure 1 (x denotes the site of protonation). Protonation of phenol can occur at the C atoms of the aromatic ring in ortho, meta, para, and ipso positions (x = o, m, p, and *i*) to form the carbenium ions 1-4(σ -complexes, Wheland intermediates), and at the O atom (x =O) to form the oxonium ion 5. Moreover, trans and cis isomers of the OH group with respect to the aliphatic CH₂ moiety exist for o/m-C₆H₇O⁺ (1a/b and 2a/b). Structures 1-5 were previously investigated theoretically by quantum chemical methods.^{23,31–33} The π -complex, in which the proton binds to the π -electron system of the aromatic ring, is a saddle point on the C₆H₇O⁺ potential.³⁴ Early low-temperature NMR studies identified $p-C_6H_7O^+$ (3) and $O-C_6H_7O^+$ (5) in superacid solutions.¹² Also in the gas phase, carbenium and oxonium ions were invoked to interpret mass spectrometric experiments of C₆H₇O⁺, although the protonation site could not directly be determined.^{35–39} Proton-transfer equilibrium measurements yield a proton affinity of C_6H_6O of PA = 816 kJ/mol (assuming 3 as the most stable C₆H₇O⁺ structure).³⁵ The PA for O protonation was estimated as 753 kJ/mol.³⁶ In contrast to mass spectrometric studies, recent IR spectra of $C_6H_7O^+$ – $Ar_{1,2}$ recorded in the O–H stretch range carry the unambiguous signatures of complexes of 1 and/or 3, and 5.23 In line with theoretical predictions, the IR spectra demonstrate that the most stable $C_6H_7O^+$ – $Ar_{1,2}$ structures have

- (31) Eckert-Maksic, M.; Klessinger, M.; Maksic, Z. B. Chem. Phys. Lett. 1995, 232. 472 Tishchenko, O.; Pham-Tran, N. N.; Kryachko, E. S.; Nguyen, M. T. J.
- (32) Phys. Chem. A 2001, 105, 8709.
 Bouchoux, G.; Defaye, D.; McMahon, T.; Likholyot, A.; Mo, O.; Yanez, M. Chem.-Eur. J. 2002, 8, 2900. (33)

- (34) Heidrich, D. Angew. Chem., Int. Ed. 2002, 41, 3208.
 (35) Lau, Y. K.; Kebarle, P. J. Am. Chem. Soc. 1976, 98, 7452.
 (36) DeFrees, D. J.; McIver, R. T.; Hehre, W. J. J. Am. Chem. Soc. 1977, 99,
- 3853. (37)
- Martinsen, D. P.; Buttril, S. E., Jr. Org. Mass. Spectrom. 1976, 11, 762. (38) Martinsen, D. P.; Buttril, S. E., Jr. J. Am. Chem. Soc. 1978, 100, 6559.
- Wood, K. V.; Burinsky, D. J.; Cameron, D.; Cooks, R. G. J. Org. Chem. 1983, 48, 5236. (39)

Figure 2. Mass spectrum of the electron ionization source for a coexpansion of 5% H₂ in Ar and phenol vapor at $p_s = 8$ bar. The most intense peaks are assigned to Ar_m^+ , Ar_mH^+ , and $Ar_mH_3^+$ (m = 1-4), protonated phenol $(C_6H_7O^+)$, and H_3O^+ (originating from H_2O impurities in the gas inlet system). Part of the spectrum is vertically expanded by a factor of 14 to visualize small peaks, such as the weakly bound $C_6H_7O^+$ – Ar_n clusters (\bullet).

H-bonds between Ar and the OH groups of 1/3 and $5.^{23}$ The intermolecular H-Ar bonds significantly perturb the properties of the intramolecular O-H bonds via H-bonding solvation effects. The lack of detection of meta and ipso protonation of C₆H₆O confirms that, similar to the liquid phase, the OH group of phenol is a strongly ortho and para directing and activating substituent also in the gas phase.²³ The main goal of the present study is the characterization of different C₆H₇O⁺-L dimers (L = Ne, Ar, N₂) via IRPD and the application of the messenger approach to derive spectroscopic properties of bare oxonium and carbenium ions of $C_6H_7O^+$. The experimental results are complemented by quantum chemical calculations, which provide additional information on both the C₆H₇O⁺ isomers and the intermolecular interaction in their $C_6H_7O^+-L$ dimers.

2. Experimental and Theoretical Methods

IRPD spectra of mass-selected $C_6H_7O^+-L$ (L = Ne, Ar, N₂) dimers are recorded in a tandem quadrupole mass spectrometer coupled to an ion source and an octopole ion trap.40 The cluster ion source combines a pulsed molecular beam expansion with electron ionization (EI). The gas mixture, obtained by passing H₂:Ne (ratio 1:20), H₂:Ar (1:20), or H₂:He:N₂ (1:1:20) over a heated phenol sample ($T \approx 360$ K), expands through a pulsed nozzle into a vacuum chamber at stagnation pressures of $p_s = 3-15$ bar. EI of the gas mixture is accomplished by electron beams ($\approx 100 \text{ eV}$) emitted from two tungsten filaments close to the nozzle orifice. Ion-molecule reactions form Brønsted acids XH⁺ (e.g., $X = H_2$, L) in the high-pressure region of the expansion. XH^+ ions protonate phenol via exothermic proton-transfer reactions:²⁴

$$XH^{+} + C_6H_6O \rightarrow X + C_6H_7O^{+}$$
⁽⁴⁾

Subsequent three-body association reactions produce weakly bound $C_6H_7O^+-L$ complexes:

$$C_6H_7O^+ + L + M \rightarrow C_6H_7O^+ - L + M \quad M = L, C_6H_6O, H_2, He$$
(5)

As an example, Figure 2 shows a mass spectrum of the EI ion source, obtained by coexpanding 5% H₂ in Ar and phenol vapor at $p_s = 8$ bar. Major peaks are assigned to Ar_m^+ , Ar_mH^+ , $Ar_mH_3^+$ (m = 1-4), $C_6H_7O^+$, and H₃O⁺ (originating from water impurities in the gas inlet system). The vertically expanded inset demonstrates the production of $C_6H_7O^+-Ar_n$ complexes. $C_6H_7O^+-L$ dimers are selected from the skimmed supersonic plasma expansion by an initial quadrupole mass

spectrometer and injected into an octopole ion guide. A tunable IR laser pulse generated by an optical parametric oscillator (OPO) laser system interacts with the mass-selected C₆H₇O⁺-L beam in the octopole. Resonant vibrational excitation of C6H7O+-L induces the rupture of the weak intermolecular bond:

$$C_6H_7O^+ - L + \nu_{IR} \rightarrow C_6H_7O^+ + L$$
(6)

Only this dissociation process is observed upon single-photon IR excitation. The C₆H₇O⁺ fragment ions are selected by a second quadrupole mass filter and monitored as a function of the laser frequency to obtain the IR action spectrum of C₆H₇O⁺-L. Frequency calibration, accurate to better than 0.2 cm⁻¹, is accomplished by recording optoacoustic spectra of NH3 and HDO (using the idler and signal outputs of the OPO laser) simultaneously with the IRPD spectra.41 All IRPD spectra are linearly normalized for laser intensity variations measured with an InSb detector.

Ab initio and density functional calculations are carried out for all $C_6H_7O^+$ isomers (1-5) and their complexes with Ne, Ar, and N₂ at the MP2(fc) and B3LYP levels using the 6-311G(2df,2pd) basis set.42 All coordinates are relaxed during the search for stationary points. Intermolecular dissociation energies (D_e) of C₆H₇O⁺-L are corrected for basis set superposition error and fragment relaxation energy.^{43,44} Harmonic vibrational frequencies are scaled by a factor of 0.955 (B3LYP). The analysis of the $C_6H_7O^+$ charge distributions is carried out at the MP2 level employing the AIM (atoms-in-molecules) population analysis. The properties of the cis and trans isomers of o/m-C₆H₇O⁺ (as well as their o/m-C₆H₇O⁺-L dimers) relevant for the present work are rather similar. Consequently, if not stated otherwise, they are discussed as single structures denoted as $1 (o-C_6H_7O^+)$ and 2 $(m-C_6H_7O^+).$

3. Results and Discussion

3.1. Theoretical Results. Table 1 summarizes relevant properties of x-C₆H₇O⁺. Only σ -complexes (C or O protonation of phenol, 1-5) are considered, because π -complexes of aromatic molecules with small electrophiles (such as H⁺) are saddle points on the AH⁺ potential.³⁴ In agreement with previous MP2 and B3LYP calculations,^{23,31-33} the relative stabilization energies, $E_{\rm rel}$ (given with respect to $p-C_6H_7O^+$), vary in the order 3 < 1 < 5 < 2 < 4 at the MP2 level, and the stabilities of 5 and 2 are reversed at the B3LYP level (Figure 3). As reported previously,³² the PA of phenol for protonation in the para position calculated with the B3LYP and MP2 methods (PA = 833 and 796 kJ/mol) over- and underestimates the experimental value (PA = 816-817 kJ/mol).^{35,45} Differences between $E_{\rm rel}$ calculated using the 6-311G(2df,2pd) and the 6-31G* basis²³ are small for all carbenium isomers 1-4 (<5 kJ/mol). In contrast, $E_{\rm rel}$ of the oxonium ion 5 is remarkably lower using the larger 6-311G(2df,2pd) basis (by 16 kJ/mol at MP2 and

- (44) Chalasinski, G.; Szczesniak, M. M. Chem. Rev. 1994, 94, 1.
 (45) Hunter, E. P. L.; Lias, S. G. J. Phys. Chem. Ref. Data 1998, 27, 413.

⁽⁴⁰⁾ Dopfer, O. Int. Rev. Phys. Chem. 2003, 22, 437.

⁽⁴¹⁾ Guelachvili, G.; Rao, K. N. Handbook of Infrared Standards; Academic Press: London, 1993.

⁽⁴²⁾ Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. Frisch, M. J.; Trücks, G. W.; Schlegel, H. B.; Scüsena, G. E.; Robo, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, U. Y. Stefanov, B. B.; Lin, G.; Liashenko, A.; Pickorz, P.; Komaromi, J. J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. *Gaussian 98*, revision A.7; Gaussian, Inc.: Pittsburgh, PA, 1998.

⁽⁴³⁾ Boys, S. F.; Bernardi, F. Mol. Phys. 1970, 19, 553.

Table 1. Selected Properties of Possible C₆H₇O⁺ Isomers: Relative Energies Corrected for Zero-Point Energy (E_{rel}), O–H Separations (R_{OH}), and O–H (ν_{OH}) and Aliphatic C–H (ν_{CH}) Stretch Frequencies^{*a*} Calculated at the MP2/6-311G(2df,2pd) and B3LYP/6-311G(2df,2pd) Levels

	MP	2		B3LYP					
ion	E _{rel} [kJ/mol] ^b	R _{OH} [Å]	E _{rel} [kJ/mol]	R _{он} [Å]	${\displaystyle {{{ u }_{{ m OH}}}}\ {\left[{ m cm}^{-1} ight]^c}}$	ν _{CH} (sp³) [cm ⁻¹] ^c			
1a	13.46	0.970	11.03	0.970	3563.6 (215)	2858.2 (39) 2868.2 (17)			
1b	18.16	0.969	17.16	0.969	3575.0 (220)	2850.0 (23) 2866.2 (12)			
2a	66.52	0.964	65.43	0.965	3630.4 (157)	2802.8 (26) 2811.6 (64)			
2b	64.44	0.965	62.72	0.965	3625.5 (152)	2806.6 (23) 2814.0 (57)			
3	0	0.970	0	0.970	3566.3 (223)	2842.5 (35) 2843.4 (11)			
4 5	119.65 46.54	0.964 0.974	125.97 77.10	0.965 0.974	3626.9 (111) 3555.8 (305) 3479.7 (245)	2561.5 (110)			

^{*a*} Harmonic frequencies are scaled by 0.955. ^{*b*} $E_{\rm rel}$ values determined at the MP2 level are corrected using the zero-point energy calculated at the B3LYP level. ^{*c*} IR intensities ($I_{\rm OH}$ and $I_{\rm CH}$ in km/mol) are given in parentheses.

Reaction Coordinate

Figure 3. Salient parts of the potential energy surface of $C_6H_7O^+$ calculated at the B3LYP/6-311G(2df,2pd) level. Relative energies (E_{rel} in kJ/mol, given with respect to 3) are corrected for zero-point energy (ZPE). Transition states for proton migration from structure **x** to **y** are denoted as $\mathbf{x} \leftrightarrow \mathbf{y}$. Without ZPE correction, structure **4** corresponds to a local minimum on the PES.

B3LYP),²³ yielding a better match between the experimental $(E_{\rm rel} = 63 \text{ kJ/mol})^{36}$ and B3LYP energies $(E_{\rm rel} = 77 \text{ kJ/mol})$. Figure 3 illustrates part of the potential energy surface (PES) of $C_6H_7O^+$ (B3LYP). Transition states for proton migration from structure **x** to structure **y** are denoted as $\mathbf{x} \leftrightarrow \mathbf{y}$ (**x**, $\mathbf{y} = 1-5$). The cis isomers 1b and 2b as well as their transition states toward 3 and 4 are not considered, because $E_{\rm rel}$ values of cis and trans structures are very similar (Table 1).32 Vibrational analysis for 1-5 confirms their identification as minima on the PES. After correction for zero-point energy, however, $E_{\rm rel}$ of 4 exceeds $E_{\rm rel}$ of 1a \leftrightarrow 4, suggesting that *i*-C₆H₇O⁺ (4) is metastable with respect to proton migration toward $o-C_6H_7O^+$ (1). On the other hand, isomerization of $m-C_6H_7O^+$ (2) toward the more stable carbenium ions 1 and 3 is associated with barriers on the order of $V \approx 30$ kJ/mol, and isomerization of 5 into 1-4 requires an even larger barrier, $V(5 \rightarrow 4) \approx 160$ kJ/mol.

Certain $C_6H_7O^+$ ions feature very different properties of the O–H bond(s), such as bond lengths (R_{OH}), stretching frequencies

(ν_{OH}), and corresponding IR intensities (I_{OH}).^{23,32} The B3LYP results are summarized in Table 1. Briefly, the $C_6H_7O^+$ isomers can be classified into three groups according to the properties of their O-H bonds: the oxonium ion (5), the ortho and para protonated carbenium ions (1/3), and the meta and ipso protonated carbenium ions (2/4). The strength of the O-H bonds decreases in the order 2/4 > 1/3 > 5, and their acidity increases accordingly. These trends are apparent in the calculated R_{OH} and ν_{OH} values (Table 1): ν_{OH} decreases along the series 2/4 > 1/3 > 5, and R_{OH} shows the reversed trend. Figure 4 compares IR stick spectra of 1–5 (B3LYP). Again, ν_{OH} and I_{OH} values of 1 and 3, and also of 2 and 4, are very similar. For the oxonium ion 5, the two $\nu_{\rm OH}$ bands represent the symmetric and antisymmetric combinations of the two local O–H oscillators, $\nu_{OH,s}$ and $\nu_{OH,as}$. Their center frequency, $\nu_{OH,av}$, corresponds to a measure of the O–H bond strength in 5. In addition to v_{OH} , C-H stretch modes (ν_{CH}) are also included in Figure 4 and Table 1. In the aromatic C–H stretch range ($\nu > 3000 \text{ cm}^{-1}$), $v_{\rm CH}$ modes with sp² hybridization of the C atoms are very weak and occur for all considered ions 1-5 between 3022 and 3069 cm⁻¹. The carbenium isomers 1-4 feature more intense aliphatic $v_{\rm CH}$ vibrations (sp³ hybridization of the protonated C atom) in the range $\nu < 3000 \text{ cm}^{-1}$. In general, the predicted ν_{CH} (sp³) frequency differences between 1 and 3, and 2 and 4, are larger than those for $\nu_{\rm OH}$. Noteworthy, $\nu_{\rm CH}$ (sp³) of **2** are markedly shifted from ν_{CH} (sp³) of **4**, indicating that, in contrast to the O-H stretch range, 2 and 4 can readily be distinguished in the C-H stretch range.

H-bonding of Ne, Ar, or N_2 to the acidic OH groups of 1-5induces significant changes in the O-H bond properties of the bare C₆H₇O⁺ isomers. Relevant inter- and intramolecular parameters of C₆H₇O⁺-Ar and C₆H₇O⁺-N₂ (B3LYP) are summarized in Tables 2 and 3, respectively.46 The O-H-L bonds in the H-bound dimers, denoted as (1-5)-L(H), are slightly nonlinear ($178^{\circ} < \phi < 167^{\circ}$). The acidity order of the intramolecular O-H bond(s) in C₆H₇O⁺, 5 > 1/3 > 2/4, is correlated with the strength of the intermolecular OH-L bonds in the corresponding H-bound dimers. For example, dimers of the oxonium ion 5-L(H) feature a larger dissociation energy $(D_{\rm e})$, a shorter intermolecular separation $(R_{\rm HL})$, a larger intermolecular H–L stretch frequency (ν_s), and a larger complexation-induced $R_{\rm OH}$ elongation ($\Delta R_{\rm OH}$) than dimers of the carbenium ions (1-4)-L(H). These effects are larger in $C_6H_7O^+-N_2$ as compared to $C_6H_7O^+-Ar$, because of the stronger intermolecular interaction in the former complexes. Figure 4 compares the IR stick spectra calculated for the H-bound dimers of all $C_6H_7O^+$ isomers with Ar and N₂, (1-5)-Ar(H) and (1-5)-N₂(H). In all cases, the H-bound ν_{OH} modes experience a complexation-induced shift to lower frequencies (red shifts Δv_{OH} up to 11%), and their IR intensities are enhanced (up to 600%). The acidity order of the OH groups of the different $C_6H_7O^+$ ions can be clearly recognized in Figure 4. For example, the most pronounced red shifts are obtained for ν_{OHs} of 5, which transforms to the bound ν_{OH} vibration $(\nu_{OH,b})$ upon H-bonding. Because of the similar intermolecular interaction in 1-L(H) and 3-L(H), and also in 2-L(H) and 4-L(H), the ν_{OH} bands of these dimers occur at approximately the same frequencies. Consequently, it is difficult to discriminate

⁽⁴⁶⁾ As B3LYP calculations of charged complexes containing Ne are not reliable, 67 computational results of the $C_6H_7O^+-Ne$ dimers are not discussed further.

Figure 4. IR stick spectra of $C_6H_7O^+$, H-bound $C_6H_7O^+-Ar$, and H-bound $C_6H_7O^+-N_2$ calculated for all possible $C_6H_7O^+$ isomers: the carbenium isomers 1–4 and the oxonium ion 5 (B3LYP, Tables 1–3). Trans and cis isomers of o- $C_6H_7O^+$ (1a/b) and m- $C_6H_7O^+$ (2a/b) are plotted together as 1 and 2, respectively. Aliphatic C–H (sp³) and O–H stretch vibrations are indicated as v_{CH} and v_{OH} . The symmetric and antisymmetric combinations of the two local O–H oscillators of 5 are designated as $v_{OH,s}$ and $v_{OH,s}$. The bound and free O–H stretch modes of 5–L(H) are denoted $v_{OH,b}$ and $v_{OH,f}$, respectively. Aromatic C–H (sp²) stretch modes between 3020 and 3070 cm⁻¹ are not visible in the simulations because of their low calculated IR intensities.

Table 2. Selected Parameters of the Intermolecular H–Ar and Intramolecular O–H Bonds of H-Bound $C_6H_7O^+$ –Ar Isomers Calculated at the B3LYP/6-311G(2df,2pd) Level: Dissociation Energies (D_e in kJ/mol), H–Ar Distances (R_{HAr} in Å), O–H–Ar Angles (φ), H–Ar Stretch Frequencies (ν_s in cm⁻¹), Complexation-Induced O–H Bond Length Changes (ΔR_{OH} in Å), O–H and Aliphatic C–H Stretch Frequencies^a (ν_{OH} and ν_{CH} in cm⁻¹), and IR Intensities (I_{OH} and I_{CH} in km/mol)

	1a–Ar(H)	1b–Ar(H)	2a–Ar(H)	2b-Ar(H)	3–Ar(H)	4–Ar(H)	5–Ar(H)
$D_{\rm e}$	5.29	5.77	4.00	3.95	5.66 ^b	3.34	12.25 ^c
$R_{\rm HAr}$	2.391	2.387	2.513	2.497	2.394	2.511	2.167
φ	168°	168°	175°	172°	167°	177°	178°
$\dot{\nu}_{s}$	65.7	67.8	54.7	55.6	65.3	65.3	108.6
$\Delta R_{\rm OH}$	0.004	0.004	0.002	0.002	0.004	0.002	0.011
							-0.001
$\nu_{ m OH}$	3487.1	3498.4	3590.3	3583.7	3491.2	3596.8	3299.6
							3532.4
I_{OH}	647	652	395	398	659	293	1076/293
$\nu_{\rm CH}~({\rm sp}^3)$	2859.3	2853.3	2802.8	2806.8	2842.7	2555.1	
	2869.2	2869.4	2811.8	2814.3	2843.7		
I _{CH}	38/16	20/11	25/64	22/55	34/11	108	

^{*a*} Harmonic frequencies are scaled by 0.955. ^{*b*} $D_e = 7.57$ kJ/mol at the MP2/6-311G(2df,2pd) level. ^{*c*} $D_e = 14.14$ kJ/mol at the MP2/6-311G(2df,2pd) level.

between 1-L(H) and 3-L(H), and also between 2-L(H) and 4-L(H), in the O-H stretch range. In contrast to ν_{OH} , H-bonding with Ar and N₂ does not significantly affect the aliphatic ν_{CH} (sp³) modes of 1-4. Thus, as discussed for ν_{CH} (sp³) of bare 1-4, a more definitive discrimination between the carbenium isomers is eventually possible in the C-H stretch range.

3.2. Experimental Results. Figure 5 compares IRPD spectra of $C_6H_7O^+$ -Ar recorded under different experimental conditions. The spectra are obtained for stagnation pressures of $p_s = 3$, 8, and 12 bar and subsequent optimization of all other ion source parameters.⁴⁰ The positions, widths, and assignments of

1720 J. AM. CHEM. SOC. ■ VOL. 126, NO. 6, 2004

the transitions observed are listed in Table 4. The spectrum in trace (a) was discussed in detail in ref 23, and only the salient results are briefly reviewed. On the basis of band profiles, complexation-induced band shifts, and the comparison with quantum chemical calculations, peaks A₁ and A₂ at 3534 and 3329 cm⁻¹ were assigned to the free and bound O–H stretch vibrations ($\nu_{OH,f}$ and $\nu_{OH,b}$) of **5**–**Ar**(**H**).²³ Similarly, peak B₁ at 3493 cm⁻¹ was attributed to ν_{OH} of **1/3**–**Ar**(**H**).²³ The calculated frequencies of A₁, A₂, and B₁ (3532, 3300, and \approx 3490 cm⁻¹, Table 2) compare favorably with the corresponding experimental values (3534, 3329, and 3493 cm⁻¹, Table 4) and support the given assignment.

Table 3. Selected Parameters of the Intermolecular H–N and Intramolecular O–H Bonds of H-Bound $C_6H_7O^+-N_2$ Isomers Calculated at the B3LYP/6-311G(2df,2pd) Level: Dissociation Energies (D_e in kJ/mol), H–N Distances (R_{HN} in Å), O–H–N Angles (φ), H–N Stretch Frequencies (ν_s in cm⁻¹), Complexation-Induced O–H Bond Length Changes (ΔR_{OH} in Å), O–H and Aliphatic C–H Stretch Frequencies^{*a*} (ν_{OH} and ν_{CH} in cm⁻¹), and IR Intensities (I_{OH} and I_{CH} in km/mol)

	1a–N ₂ (H)	1b-N ₂ (H)	2a-N ₂ (H)	2b-N ₂ (H)	3–N ₂ (H)	4–N ₂ (H)	5–N ₂ (H)
$D_{\rm e}$	18.10	18.75	14.52	14.21	18.51 ^b	12.82	32.90°
$R_{ m HN}$	1.977	1.979	2.068	2.065	1.980	2.085	1.774
φ	169°	168°	170°	169°	169°	177°	176°
$\nu_{\rm s}$	111.3	111.1	96.6	96.4	111.4	87.3	160.0
$\Delta R_{\rm OH}$	0.009	0.009	0.005	0.005	0.008	0.004	0.023
							-0.002
ν_{OH}	3396.6	3410.1	3530.8	3524.8	3401.6	3550.9	3083.9
							3544.8
$I_{\rm OH}$	1100	1088	709	699	1112	530	1739/260
$\nu_{\rm CH}$ (sp ³)	2860.1	2855.9	2803.5	2807.0	2844.3	2543.6	
	2870.3	2872.3	2812.1	2814.4	2845.6		
I _{CH}	37/15	17/9	25/62	21/53	32/10	109	

^{*a*} Harmonic frequencies are scaled by 0.955. ^{*b*} $D_e = 21.63$ kJ/mol at the MP2/6-311G(2df,2pd) level. ^{*c*} $D_e = 35.82$ kJ/mol at the MP2/6-311G(2df,2pd) level.

Figure 5. IRPD spectra of $C_6H_7O^+-Ar$ between 3170 and 3680 cm⁻¹ recorded under different experimental conditions. Transitions marked with A_i , B_i , and C_i originate from $O-C_6H_7O^+-Ar$, $o/p-C_6H_7O^+-Ar$, and ${}^{13}C^{12}C_5H_6O^+-Ar$, respectively (Table 4). Signal optimization using higher stagnation pressures (p_s) clearly enhances the relative abundance of $o/p-C_6H_7O^+-Ar$ (1/3-Ar, bands B_1/B_1^{π}) with respect to $O-C_6H_7O^+-Ar$ (5-Ar, bands $A_{1/2}$).

Although all spectra in Figure 5 are similar with respect to peak positions, the relative intensities of several bands vary drastically. In particular, the conditions employed for spectrum (c) as compared to those of (a) enhance the production of 1/3-Ar(H) over 5-Ar(H) by a factor of ≈ 5 , thus confirming that transitions A_{1/2} and B₁ clearly arise from different carriers. Apparently, the widths of A_2 and B_1 decrease for increasing p_s (Table 4), indicating that the complexes are produced with less internal energy at higher p_s . In addition to the bands A₁, A₂, and B_1 observed in spectrum (a), new features are clearly identified in spectra (b) and (c). The carrier(s) of these peaks must be different from 5-Ar(H), because the relative intensity of this isomer is reduced at higher p_s . By comparison with the IRPD spectrum of phenol⁺-Ar,^{30,47} band C₁ at 3464 cm⁻¹ is readily assigned to possible 13C isotopomers of H-bound phenol⁺-Ar, ${}^{13}C^{12}C_5H_6O^+$ -Ar = ${}^{13}C$ -Ar(H), which contaminate the mass channel of $C_6H_7O^+$ -Ar (${}^{12}C_6H_7O^+$ -Ar). From the mass spectrum in Figure 2, the ¹³C-Ar contamination of the m = 135 u channel is estimated as 2–3%. As expected, the position of C₁ matches the ν_{OH} frequency of H-bound phenol⁺-Ar (${}^{12}C_{6}H_{6}O^{+}$ -Ar), demonstrating that ${}^{12}C \rightarrow {}^{13}C$ substitutions have only minor effects on the O–H bond of phenol⁺.^{30,47} In addition to C₁, a symmetric peak centered at 3554 cm⁻¹ (B₁^{π}) is observed in Figure 5, and its intensity is correlated with that of B₁ assigned to ν_{OH} of 1/3-Ar(H). Hence, B₁^{π} is assigned to ν_{OH} of the less stable π -bound Ar dimers, 1/3-Ar(π).

The spectral detection of the $1/3-Ar(\pi)$ local minimum is expected according to the following arguments. The ν_{OH} band of the local π -bound minimum was also observed in the IRPD spectrum of phenol⁺-Ar.^{30,47-49} The small difference in the binding energy of H-bound and π -bound phenol⁺-Ar, $\Delta D_{\rm e} \approx$ 3.1 kJ/mol (MP2/6-311G(2df,2pd)), was invoked to explain the efficient production of the π -bound local minimum in addition to the H-bound global minimum.48 Calculations at the same level of theory predict an even smaller binding energy difference of $\Delta D_{\rm e} \approx 1.7$ kJ/mol between 3–Ar(H) and 3–Ar(π). Moreover, I_{OH} values calculated at the B3LYP/6-31G* level are similar for H-bound phenol⁺-Ar and 3-Ar(H), and also for π -bound phenol⁺-Ar and 3-Ar(π) ($I_{\rm OH} \approx 500$ and 200 km/mol, respectively). Consequently, the efficient production and IR detection of 1/3-Ar(π) in Figure 5 is not surprising. Moreover, B_1^{π} features a symmetric peak profile, as expected for a π -bound dimer.⁴⁸ In contrast to $1/3-Ar(\pi)$, $5-Ar(\pi)$ is not detected in the IRPD spectrum, probably because of the larger difference in the Ar binding energies between 5-Ar(H) and $5-Ar(\pi)$ and/ or low isomerization barriers from $5-Ar(\pi)$ toward 5-Ar(H). In fact, all efforts to calculate the structure of $5-Ar(\pi)$ at the MP2 level failed, because all chosen π -bound starting geometries converged to the most stable H-bound structure. Finally, complexes of 2 and 4 are not observed in Figure 5. These ions are considerably less stable than 3 and 1, and their production in the EI ion source is significantly suppressed. On the other hand, the large isomerization barrier separating 5 from the carbenium ions, $V(5 \rightarrow 4) \approx 160$ kJ/mol, accounts for the efficient production of 5-Ar (section 4).^{23,32}

Figure 6 compares the IRPD spectra of $C_6H_7O^+-L$ (L = Ne, Ar, N₂) between 2650 and 3700 cm⁻¹ (Table 4). In addition

⁽⁴⁸⁾ Solcà, N.; Dopfer, O. Chem. Phys. Lett. 2000, 325, 354.

⁽⁴⁹⁾ Solcà, N.; Dopfer, O. Chem. Phys. Lett. 2003, 369, 68.

Table 4. Band Maxima (cm⁻¹), Widths (cm⁻¹, fwhm, in Parentheses), and Assignments of Vibrational Transitions Observed in the IRPD Spectra of Protonated Phenol Complexes (x-C₆H₇O⁺-L with L = Ne, Ar, N₂)^{*a*}

band	position	assignment	isomer	band	position	assignment	isomer
A ₁	3552 (10)	$\nu_{ m OH,f}$	$5-Ne(H)^b$	B ₅	3069 (22)	$\nu_{\rm CH}({\rm sp}^2)$	1/3-Ar(H) ^e
B_1	3552 (10)	ν_{OH}	$1/3 - Ne(H)^b$	B_3	2877 (12)	$\nu_{\rm CH} ({\rm sp}^3)$	1/3-Ar(H)
A_2	3477 (10)	$\nu_{\mathrm{OH,b}}$	5-Ne(H)	B_2	2864 (9)	$\nu_{\rm CH} ({\rm sp}^3)$	1/3-Ar(H)
B_3	2877 (10)	$\nu_{\rm CH}$ (sp ³)	1/3-Ne(H)	A_1	3543 (12)	$\nu_{\rm OH,f}$	$5 - N_2(H)$
B_2	2865 (10)	$\nu_{\rm CH}~({\rm sp^3})$	1/3-Ne(H)	B_1	3408 (6)	$\nu_{\rm OH}$	$1/3 - N_2(H)$
B_1^{π}	3554 (13)	$\nu_{\rm OH}$	$1/3 - Ar(\pi)$	C_1	3365 (4)	$\nu_{ m OH}$	$^{13}C - N_2(H)$
A_1	3534 (9)	$\nu_{\rm OH,f}$	5-Ar(H)	A ₃	3252 (34) ^f	$\nu_{\rm OH,b} + \nu_{\rm s}$	$5 - N_2(H)$
B_1	$3493(12)^{c}$	ν_{OH}	1/3-Ar(H)	A_2	3073 (36) ^f	$\nu_{\mathrm{OH,b}}$	$5 - N_2(H)$
C_1	3464 (10)	$\nu_{ m OH}$	$^{13}C-Ar(H)$	B_3	2877 (12)	$\nu_{\rm CH}$ (sp ³)	$1/3 - N_2(H)$
A_2	$3329(23)^d$	$\nu_{\mathrm{OH,b}}$	5-Ar(H)	B_2	2865 (10)	$\nu_{\rm CH} ({\rm sp}^3)$	$1/3 - N_2(H)$
B_4	3046 (16)	$\nu_{\rm CH}~({\rm sp^2})$	$1/3-Ar(H)^e$. ,		

^{*a*} Oxonium and carbenium isomers of C₆H₇O⁺ are denoted as **5** (bands A_i) and **1/3** (bands B_i). Transitions originating from the contamination ¹³C¹²C₅H₆O⁺-L are denoted as ¹³C-L (band C₁). All peaks are assigned to H-bound dimers (H, in parentheses), with the exception of B₁^{π} assigned to π -bound o/p-C₆H₇O⁺-Ar. ^{*b*} Both **5**-Ne(H) and **1/3**-Ne(H) isomers contribute to this band (see text). ^{*c*} The width of this peak decreases to 10 cm⁻¹ for $p_s = 12$ bar (Figure 5). ^{*d*} The width of this peak decreases from 23 to 18 and 15 cm⁻¹ for $p_s = 3$, 8, and 12 bar (Figure 5). ^{*e*} Part of the signal may originate from the H-bound *O*-C₆H₇O⁺-Ar isomer (see text). ^{*f*}A₂ and A₃ probably arise from transitions of the type $\nu_{OH,b} + \nu_x \leftarrow \nu_x$ and $\nu_{OH,b} + \nu_s + \nu_x \leftarrow \nu_x$.

Figure 6. IRPD spectra of $C_6H_7O^+-L$ (L = Ne, Ar, N₂) between 2650 and 3700 cm⁻¹. Transitions marked with A_i and B_i are assigned to the $O-C_6H_7O^+-L$ (5–L) and the $o/p-C_6H_7O^+-L$ (1/3–L) isomers, respectively (Table 4). The ν_{OH} bands of ${}^{13}C^{12}C_5H_6O^+-L$ (${}^{13}C-L$) are labeled with C₁. With the exception of B₁^π, which is assigned to π -bound $o/p-C_6H_7O^+-Ar$, all peaks are assigned to H-bound C₆H₇O⁺-L dimers. The spectra have been recorded after optimizing the ion signal at $p_s = 6$ (L = N₂), 8 (L = Ar), and 15 bar (L = Ne).

to the v_{OH} transitions discussed above, the C₆H₇O⁺-Ar spectrum features peaks in the C–H stretch range at 2864 (B₂), 2877 (B₃), 3046 (B₄), and 3069 cm⁻¹ (B₅). B₂ and B₃ occur in the aliphatic C-H stretch range and must be assigned to a carbenium isomer of $C_6H_7O^+$. Resonant coupling between the two equivalent aliphatic C-H bonds in 1 and 3 gives rise to symmetric $v_{CH,s}$ (sp³) and antisymmetric $v_{CH,as}$ (sp³) normal modes. Thus, possible assignments of B_2 and B_3 include $\nu_{CH,s}$ and $\nu_{CH,as}$ of 1-Ar and/or 3-Ar, or $\nu_{CH,s}$ of 1-Ar and 3-Ar, respectively. As it is difficult to discriminate between both possibilities (Table 2), B_{2/3} are assigned less specifically to $\nu_{\rm CH}$ (sp³) of $1/3-{\rm Ar}({\rm H})$. Because of the much smaller production of $1/3-Ar(\pi)$, the contribution of this isomer to these bands can be neglected. As the C-H stretch modes are essentially unperturbed upon OH-bonding of $C_6H_7O^+$ with different L, the nearly unshifted B_{2/3} bands of the Ne and N₂ complexes (Figure 6) are readily identified also as v_{CH} (sp³).

At least two bands are observed for $C_6H_7O^+$ -Ar in the aromatic C-H stretch range. B₄ and B₅ at 3046 and 3069 cm⁻¹ are tentatively assigned to ν_{CH} (sp²) of 1/3-Ar(H). Although **5**-Ar(H) may significantly contribute to B_{4/5}, this option is less

probable, because I_{CH} (sp²) values calculated for 1/3-Ar(H) are larger (by a factor of ≈ 1.5) and the relative abundance of 1/3-Ar(H) as compared to 5-Ar(H) is estimated to be $\approx 2:1$ in the spectrum of Figure 6. The given assignment agrees with the B3LYP calculations, which predict v_{CH} (sp²) of 1/3-Ar(H) between 3041 and 3069 cm⁻¹. Moreover, the calculated ratio of I_{CH} (sp²) and I_{CH} (sp³) is $\approx 1:5$, also compatible with the experiment ($\approx 1:3$). The v_{CH} (sp²) transitions are not identified for C₆H₇O⁺-Ne and C₆H₇O⁺-N₂, because they are below the noise level (Ne) or hidden by the strong A₂ peak (N₂).

The A₂ peak in the C₆H₇O⁺-Ar spectrum is attributed to the bound O-H stretch vibration of 5-Ar(H). Replacing Ar by N₂ induces a considerable red shift, $\Delta v_{OH,b}$ [Ar \rightarrow N₂], as a consequence of the stronger H-bond (Section 3.1). Thus, band A_2 at 3073 cm⁻¹ in the C₆H₇O⁺-N₂ spectrum is identified as $v_{\text{OH,b}}$ of 5-N₂(H). This assignment is confirmed by the favorable comparison between experimental and calculated $\Delta v_{\text{OH,b}}$ [Ar \rightarrow N₂] shifts of -256 and -216 cm⁻¹, respectively. Moreover, band A₂ of C₆H₇O⁺-N₂ is considerably shaded to the blue, consistent with an assignment to a bound O-H stretch mode.^{23,29,48} On the other hand, the free O-H stretch band of $5-N_2(H)$ is expected with a rather symmetric profile close to the corresponding vibration of 5-Ar(H). Hence, peak A₁ at 3543 cm⁻¹ is attributed to $v_{OH,f}$ of **5**–**N**₂(**H**). The experimental $\Delta v_{OH,f}$ [Ar \rightarrow N₂] shift (9 cm⁻¹) is similar to the calculated value (12 cm⁻¹). The third intense, blue shaded peak in the $C_6H_7O^+-N_2$ spectrum at 3408 cm⁻¹ (B₁) is assigned to ν_{OH} of $1/3-N_2(H)$. The detection of B₂₁₃ for C₆H₇O⁺-N₂ indicates the substantial abundance of the $1/3-N_2(H)$ isomer. Also for B₁, good agreement between experimental and calculated $\Delta v_{\rm OH}$ [Ar \rightarrow N₂] is noticed (-85 and -94 cm⁻¹). Two additional weaker peaks (A3 and C1) are observed in the O-H stretch range of the $C_6H_7O^+-N_2$ spectrum. The relatively large and similar widths of A₂ and A₃ (fwhm = 36 and 34 cm⁻¹) suggest that both of them originate from the same carrier, that is, 5–N₂(H). Band A₃ is ascribed to the combination band $\nu_{OH,b}$ $+ \nu_s$ of 5-N₂(H), where ν_s is the intermolecular OH-N stretch vibration. Such combination bands were observed in the IR spectra of related H-bound dimers, such as SiOH+-N229 and $C_6H_5OH^+-N_2^{48}$. The derived ν_s frequency of $5-N_2(H)$ in the $v_{\text{OH,b}} = 1$ excited state, 179 cm⁻¹, is slightly larger than that calculated for the ground state (160 cm^{-1} , Table 3), probably

because of the increase in the OH–N interaction induced by excitation of the O–H donor stretch.²⁶ Finally, peak C₁ at 3365 cm⁻¹ is attributed to ν_{OH} of H-bound ${}^{13}C^{12}C_5H_6O^+-N_2$, ${}^{13}C-N_2(H)$, which contaminates the m = 123 u mass channel of ${}^{12}C_6H_7O^+-N_2$. Similar to $C_6H_7O^+-Ar$, the position of C₁ matches ν_{OH} of H-bound phenol⁺-N₂.^{30,48}

The calculated binding energy of $5-N_2(H)$, $D_e = 35.82$ kJ/mol (=2994 cm⁻¹) and 32.90 kJ/mol (=2750 cm⁻¹) at the MP2 and B3LYP levels, is close to the energy of its O-H stretch fundamentals ($v_{OH,f} = 3543 \text{ cm}^{-1}$ and $v_{OH,b} = 3073$ cm^{-1}). If the calculations somewhat underestimate the binding energy, some amount of (rovibrational) internal energy prior to IR excitation is necessary to induce single photon IRPD of $5-N_2(H)$.⁵⁰ In fact, the large total widths of A_{2/3} (>100 cm⁻¹) suggest that the $5-N_2(H)$ complexes observed in Figure 6 contain a significant amount of internal energy. This conclusion, however, does not hold for the significantly narrower A_1 peak, and the energy of a single IR photon in this range ($\nu_{IR} \approx 3500$ cm⁻¹) seems to be sufficient to cleave the OH–N bond in the ground vibrational state of $5-N_2(H)$. Moreover, the (integrated) relative intensity ratio of the $\nu_{OH,b}$ and $\nu_{OH,f}$ bands (≈ 2) is much smaller than the predicted ratio (\approx 7, Table 3), again suggesting that the contribution of cold $5-N_2(\mathbf{H})$ to $A_{2/3}$ is absent. Hence, assuming that A₂ and A₃ arise from sequence transitions of the type $\nu_{\text{OH,b}} + \nu_x \leftarrow \nu_x$ and $\nu_{\text{OH,b}} + \nu_s + \nu_x \leftarrow \nu_x$ (where ν_x are probably low-frequency vibrations),^{24,51} one can conclude that the dissociation energy of $5-N_2(H)$ is bracketed by A_3 and A_1 , leading to $D_0 \approx 41 \pm 2$ kJ/mol.

At first glance, it is not obvious whether the H- or π -bound structure is more stable for both 1/3-Ne and 5-Ne. On the basis of the following argument, the H-bound isomers are concluded to be the global minima of the intermolecular PES of the Ne dimers (similar to the Ar and N₂ complexes). Systematic complexation-induced frequency shifts of phenol⁺-Rg complexes $(Rg = He, Ne, Ar)^{30}$ show that the H-bound structure is the global minimum of phenol⁺-Ne. As discussed above, the H-bond strength in OH-bound complexes scales, for a given Rg ligand, with the acidity of the OH donor group. In contrast, the strengths of the π -bonds in phenol⁺-Ne, $1/3-Ne(\pi)$, and $5-Ne(\pi)$ are expected to be similar.²¹ The O-H bonds of 5 are certainly more acidic than that of phenol⁺, whereas the acidities of 1/3 and phenol⁺ are comparable (vide infra). Thus, 1/3-Ne(H) and 5-Ne(H) are concluded to be the most stable structures on their PES and expected to dominate the IRPD spectrum of $C_6H_7O^+$ -Ne.

The IRPD spectrum of $C_6H_7O^+$ –Ne displays two peaks in the O–H stretch range. Transition A₂ at 3477 cm⁻¹ is assigned to $\nu_{OH,b}$ of **5–Ne(H)**. The H-bonds in the Ne dimers are considerably weaker than those in the Ar dimers, implying that A₂ of **5–Ne(H)** is shifted to higher frequencies as compared to A₂ of **5–Ar(H)**. As A₂ of **5–Ne(H)** occurs at a lower frequency than ν_{OH} of **1/3–Ar(H)** (B₁), an assignment to ν_{OH} of **1/3–Ne(H)** can be excluded. The intensity ratio of $\nu_{OH,b}$ and $\nu_{OH,f}$ (A₂ and A₁) of **5–Ne(H)** is expected to be only slightly larger than that of bare **5** (~1:1, Figure 4, Table 1), because of the weak perturbation by the H-bound Ne ligand. Thus, a considerable fraction of the signal at 3552 cm⁻¹ is attributed to

 $v_{OH,f}$ of **5–Ne(H)** (A₁). On the other hand, part of this signal must also arise from ν_{OH} of 1/3-Ne(H) (B₁). First, this band should be observed in the O-H stretch range, because the detection of $B_{2/3}$ in the C–H stretch range implies a substantial abundance of 1/3-Ne(H) in the supersonic expansion. Second, $v_{\rm OH}$ of $1/3-{\rm Ne}({\rm H})$ can be estimated by comparing the complexation-induced shifts ($\Delta \nu_{OH} [L_a \rightarrow L_b]$) for exchanging L_a with L_b in H-bound phenol⁺-L and o/p-C₆H₇O⁺-L (L_{a,b} = Ne, Ar, N₂). The OH group in phenol⁺ is slightly more acidic than that in 1/3, giving rise to slightly larger shifts. This small difference is demonstrated by the MP2 dissociation energies calculated for phenol⁺–L ($D_e \approx 7.85$ and 22.85 kJ/mol for L = Ar and N₂) and **3–L(H)** ($D_e \approx 7.57$ and 21.63 kJ/mol for L = Ar and N₂), and by the larger Δv_{OH} [Ar \rightarrow N₂] shift of phenol⁺-L (-99 cm^{-1}) as compared to that of 1/3-L(H) (-85 cm^{-1}). Both results indicate that the H-bonds in phenol⁺-L are slightly stronger than those in 1/3-L(H). Thus, to estimate the (unknown) Δv_{OH} [L_a \rightarrow L_b] shift of 1/3-L(H), a scaling factor of 85/99 \approx 0.86 is applied to the (known) $\Delta \nu_{\rm OH} \ [L_a \rightarrow L_b]$ shifts of phenol⁺-L. Using this scaling factor and $\Delta \nu_{OH}$ [Ne \rightarrow Ar] of phenol⁺-L (-70 cm⁻¹),³⁰ $\Delta v_{\rm OH}$ [Ne \rightarrow Ar] of 1/3–L(H) is estimated as -60 cm⁻¹ and B₁ of 1/3-Ne(H) is predicted at ≈ 3553 cm⁻¹, in good agreement with the experimental observation. In conclusion, the 3552 cm^{-1} peak in the C₆H₇O⁺-Ne spectrum is attributed to the overlapping B_1 and A_1 transitions arising from 1/3-Ne(H)and 5-Ne(H), respectively. Although part of the signal at 3552 cm⁻¹ may also originate from $\nu_{\rm OH}$ of $1/3-{\rm Ne}(\pi)$ (B₁^{π}), the contribution of this isomer is probably minor.

In summary, major absorptions in the IRPD spectra of $C_6H_7O^+-L$ (L = Ne, Ar, N₂) are analyzed in terms of H-bound $C_6H_7O^+-L$ dimers composed of **1/3** and **5**. For **1/3–Ar**, also the π -bound structure is detected as a less stable isomer. The spectra of larger $C_6H_7O^+-L_n$ clusters (L = Ar and N₂, n = 2-6) discussed elsewhere⁵² support the given assignments.

4. Further Discussion

The complexation-induced shifts, band profiles, and relative intensities in the IRPD spectra of C₆H₇O⁺-L unambiguously identify (at least) two different $C_6H_7O^+$ ions in the supersonic plasma expansion: the oxonium isomer $(O-C_6H_7O^+, 5)$ and the ortho and/or para protonated carbenium isomer $(o/p-C_6H_7O^+,$ 1/3). Complexes of $m-C_6H_7O^+$ (2) and $i-C_6H_7O^+$ (4) are not observed. Thus, in line with the theoretical predictions, the IR spectra demonstrate that 2 and 4 are substantially less stable than 1 and 3. Although the calculations in Table 1 suggest that 5 is considerably lower in energy than previously predicted using smaller basis sets,^{23,31} the relative energy difference between this isomer and the global minimum **3** is still substantial ($E_{\rm rel}$) = 47 and 77 kJ/mol at the MP2 and B3LYP levels). Thus, the experimental detection of 5 shows that there is no thermal equilibrium between the different C₆H₇O⁺ isomers produced in the employed supersonic EI (cluster) ion source. The same conclusion is apparent from the IRPD spectra of $C_6H_7O^+$ -Ar in Figure 5. The detection of complexes of 5 in the EI source is rationalized by its large barrier for rearrangement toward 1-4: once 5 is formed and cooled, efficient isomerization toward the more stable carbenium ions is hindered by $V(5 \rightarrow 4) = 162$ kJ/mol. Similarly, a large barrier separating

⁽⁵⁰⁾ Multiphoton absorptions can be excluded at the low laser intensities available (eq 6).^{24,51}
(51) Solcà, N.; Dopfer, O. *Chem. Phys. Lett.* **2001**, 347, 59.

⁽⁵²⁾ Solcà, N. Ph.D. Thesis, University of Basel, 2003.

Table 5. Experimental and Calculated Vibrational Frequencies of O-C₆H₇O⁺ and o/p-C₆H₇O⁺ (cm⁻¹)^a

isomer	vibration	experimental ^a	calculated ^b
<i>O</i> -C ₆ H ₇ O ⁺ (5)	$ u_{ m OH,s} $ $ u_{ m OH,as}$	$3502 \pm 20 \\ 3557 \pm 20$	3480 3556
o/p-C ₆ H ₇ O ⁺ (1 / 3)	$rac{ u_{ m OH}}{ u_{ m CH}~(m sp^2)}$ $ u_{ m CH}~(m sp^3)$	$\begin{array}{c} 3558 \pm 10 \\ 3046 \pm 10 / 3069 \pm 15 \\ 2865 \pm 8 / 2877 \pm 8 \end{array}$	3564-3575 3045-3069 2843-2869

^a The experimental values correspond to frequencies extrapolated from IRPD spectra of $C_6H_7O^+-L$ to zero solvation conditions (see text). ^b B3LYP/6-311G(2df,2pd) level. The values for o/p-C₆H₇O⁺ correspond to the predicted frequency ranges of cis-o-C₆H₇O⁺, trans-o-C₆H₇O⁺, and $p-C_6H_7O^+$ (Table 1).

the fluoronium and carbenium ions of protonated fluorobenzene $(C_6H_6F^+)$ was invoked to explain the detection of the less stable fluoronium isomer (besides the substantially more stable carbenium ions).^{24,25} The efficient production of **5** (eq 4) is believed to be a consequence of kinetic rather than thermodynamic factors. In addition to C₆H₇O⁺ generation, other factors determine the appearance of a particular $C_6H_7O^+-L$ cluster in the IRPD spectrum. These include the efficiency for $C_6H_7O^+-L$ cluster formation and the IR oscillator strength.23 Because of the stronger intermolecular H-bonds of 5-L(H) as compared to those of dimers of 1-4 and the correspondingly larger IR oscillator strengths (Tables 2 and 3, Figure 4), the IR detection of 5-L(H) is favored over that of other $C_6H_7O^+-L$ dimers.^{23,53}

The IR spectra of $C_6H_7O^+-L$ allow for an accurate extrapolation of the C-H and O-H stretch frequencies of the isolated $C_6H_7O^+$ isomers 1/3 and 5. The results obtained are compared in Table 5 with the theoretical predictions. Aliphatic C-H stretch modes of 1/3 can directly be estimated from the dimer spectra as $\nu_{\rm CH}$ (sp³) = 2865 ± 8 and 2877 ± 8 cm⁻¹. For these modes, the ligands L act as a messenger with essentially no influence,^{20,21} as demonstrated by the nearly L-independent v_{CH} (sp³) frequencies of 1/3-L (B_{2/3}). The same is true for the aromatic $\nu_{\rm CH}$ (sp²) fundamentals, as was also observed in the IRPD spectra of $C_6H_7^+-L_n^{20,21}$ In contrast to ν_{CH} , ν_{OH} values of H-bound C₆H₇O⁺-L are strongly L-dependent. Previous spectroscopic studies of related H-bound XH⁺-Rg dimers (Rg = He, Ne, Ar) revealed that for a given base X the complexation-induced frequency shifts, $\Delta v_{\rm XH}$, scale roughly linearly with the proton affinity (PA) of the Rg ligand.^{26,29} Extrapolation of $\Delta v_{\rm XH} \rightarrow 0$ for a large variety of bases X resulted in an X-independent PA value, $PA_0 = 166.7 \pm 4.1 \text{ kJ/mol.}^{29}$ This result can be exploited here to estimate $\nu_{\rm OH}$ of 1/3 as 3561.9 \pm 5 cm^{-1.54} Alternatively, ν_{OH} of 1/3 may directly be estimated from ν_{OH} of $1/3 - \text{Ar}(\pi)$ (B₁^{π} = 3554 cm⁻¹, fwhm =13 cm⁻¹), because for this isomer the Ar ligand has nearly no influence on the O-H bond.^{30,47,48} The discrepancy of both extrapolations is on the order of the widths of the observed transitions, and $\nu_{\rm OH}$ of 1/3 can safely be determined as 3558 \pm 10 cm⁻¹. This value compares favorably with ν_{OH} predicted for 1 and 3 (3564- 3575 cm^{-1} , Table 5).

The center frequency of $\nu_{OH,s}$ and $\nu_{OH,as}$ of O-C₆H₇O⁺ ($\nu_{OH,av}$) is a measure for the O-H bond strength in 5 and may be extrapolated as $3530 \pm 5 \text{ cm}^{-1}$ by the procedure described above.⁵⁴ The splitting between $\nu_{OH,as}$ and $\nu_{OH,s}$ ($\Delta \nu_{OH,as-s}$) is related to the resonant coupling strength between the two local O-H oscillators and can be estimated in the following way.

First, the splitting between $v_{OH,b}$ and $v_{OH,f}$ in 5–L(H) must be larger than Δv_{OHas-s} of 5. This phenomenon is typical for H-bonding of L to one of two equivalent X-H donors and has been observed for a large number of related systems.⁵⁵⁻⁶¹ Second, Δv_{OHas-s} of the 5-Ar₂(H) trimer is expected to be smaller than in bare 5. This effect has been discussed, for example, for aniline⁺- L_n clusters (L = Ar and N₂)^{55,56} and relies on the fact that the stretching force constants of the solvated X-H donor bonds are smaller than those of the (unsolvated) bonds (thus reducing the coupling strength). Using this information and the experimental O-H stretch frequencies of 5-Ne(H) and 5-Ar₂(H),²³ $\nu_{OH,s}$ and $\nu_{OH,as}$ of 5 are estimated as 3502 ± 20 and 3557 ± 20 cm⁻¹,⁶² in good agreement with the predicted values of 3480 and 3556 cm^{-1} (Table 5).

Comparison of the derived C₆H₇O⁺ frequencies with those of neutral phenol reveals the large influence of the protonation site on the properties of the OH group. In general, protonation significantly reduces the O-H bond strength, and the magnitude of this effect decreases in the order 5 > 1/3 > 2/4. Quantitatively, ν_{OH} of phenol (3656 cm⁻¹)⁶³ experiences a protonationinduced red shift of $\Delta v_{\rm OH} = -126 \pm 5 \text{ cm}^{-1}$ for 5 (using $v_{\rm OH av}$), $-98 \pm 10 \text{ cm}^{-1}$ for 1/3, and $\approx -28 \text{ cm}^{-1}$ for 2/4 (estimated from the calculations in the latter case). This trend is compatible with the calculated elongations of the O-H bond upon protonation: $\Delta R_{\rm OH} \approx 0.012$ Å for 5, ≈ 0.008 Å for 1/3, and ≈ 0.003 Å for 2/4. Consequently, the acidity of the O–H bonds in $C_6H_7O^+$ decreases along the series 5 > 1/3 > 2/4, in line with the observed L-dependent frequency shifts for the bound O-H stretch modes of C₆H₇O⁺-L. Figure 7 visualizes $\nu_{OH,av}$ of 5-L(H) and ν_{OH} of 1/3-L(H) as a function of PA_L. In line with $PA_{Ne} < PA_{Ar} < PA_{N_2}$, the intermolecular interaction increases along the series Ne < Ar < N₂, leading to decreasing O-H stretch frequencies. Because of its weaker and more acidic O-H bond, 5 is a better proton donor than 1/3, in line with the larger dissociation energies of 5-L(H) as compared to those of 1/3-L(H) (Tables 2 and 3). Consequently, the decrease of $\nu_{OH,av}$ along the series Ne \rightarrow Ar \rightarrow N₂ in Figure 7 is more pronounced than that for ν_{OH} . As discussed in section 3.2, the acidity of the O-H bond in 1/3 is slightly smaller than that of phenol⁺. Thus, the PA for O protonation of cyclic o/p-C₆H₆O is concluded to be slightly larger than that of C₆H₅O (873 kJ/mol)⁶⁴ and can be estimated as 880 \pm 10 kJ/mol.

It is illustrative to compare the carbenium ions of $C_6H_7O^+$ with the σ -complex of protonated benzene (C₆H₇⁺) to elucidate the effect of $H \rightarrow OH$ substitution at different ring positions with respect to the CH₂ moiety. Ring-protonation of (substituted)

- (56) Solcà, N.; Dopfer, O. *Eur. Phys. J. D* 2002, 20, 469.
 (57) Roth, D.; Dopfer, O.; Maier, J. P. *Phys. Chem. Chem. Phys.* 2001, 3, 2400.
- (58) Dopfer, O.; Roth, D.; Maier, J. P. J. Chem. Phys. 2001, 114, 7081. (59) Roth, D.; Dopfer, O.; Maier, J. P. Phys. Chem. Chem. Phys. 2000, 2, 5013.
- (60) Dopfer, O.; Nizkorodov, S. A.; Olkhov, R. V.; Maier, J. P.; Harada, K. J. Phys. Chem. A 1998, 102, 10017.
 (61) Dopfer, O.; Roth, D.; Maier, J. P. J. Chem. Phys. 2000, 113, 120.
- (62) Inversion tunneling of the OH₂ group, with barriers of 2.5 (B3LYP) and 5.7 (MP2) kJ/mol, possibly causes further shifts and splittings. No evidence for this splitting is observed in the dimer spectra.
- (63) Bist, H. D.; Brand, J. C. D.; Williams, D. R. J. Mol. Spectrosc. 1967, 24, 402
- (64) Kim, H.; Green, R. J.; Qian, J.; Anderson, S. L. J. Chem. Phys. 2000, 112, 5717.

For O-C₆H₇O⁺-N₂, the observed cross section is probably complicated by the fact that $\nu_{\rm IR} < D_0$ (see text).

⁽⁵⁴⁾ As described in ref 29, the linear relationship does not hold for H-bound N₂ complexes. Thus, for ν_{OH} extrapolated of o/p-C₆H₇O⁺, the respective ν_{OH} values for L = Ne (3552 cm⁻¹) and L = Ar (3493 cm⁻¹) are used. In analogy, $v_{\text{OH}av}$ of O-C₆H₇O⁺ is extrapolated using $v_{\text{OH}av}$ of the L = Ne (3514.5 cm⁻¹) and L = Ar (3431.5 cm⁻¹) complexes. (55) Solca, N.; Dopfer, O. J. Phys. Chem. A **2002**, 106, 7261.

Figure 7. Plot of $\nu_{OH,av}$ of **5**–**L**(**H**), (A₁ + A₂)/2, and ν_{OH} of **1**/3–**L**(**H**), B₁, versus the proton affinity of the ligand, PA_L (L = Ne, Ar, N₂).⁴⁵ The extrapolation to the free ν_{OH} and $\nu_{OH,av}$ frequencies of bare **1**/3 and **5** is described in the text.

aromatic molecules induces a hybridization change of the protonated C atom from sp² to sp³. The two aliphatic C-H stretch modes of $C_6H_7^+$ were observed at ν_{CH} (sp³) ≈ 2795 and $\approx 2810 \text{ cm}^{-1}$.²⁰ The calculations predict ν_{CH} (sp³) of 2 between 2803 and 2814 cm⁻¹ (Table 1), indicating that the aliphatic C-H bonds of $C_6H_7^+$ and 2 are very similar. In contrast, v_{CH} (sp³) values of 1/3 are shifted to higher frequencies by $\approx 60-70$ cm⁻¹ (Table 5), implying that the aliphatic C-H bonds in 1/3 are considerably stronger and less acidic than those in $C_6H_7^+$ and 2. The opposite trend seems to hold for the aromatic C–H bonds: ν_{CH} (sp²) values of 1/3 at 3046 and 3069 cm^{-1} are lower than ν_{CH} (sp²) of C₆H₇⁺ (3081 and 3110 cm⁻¹), demonstrating that the OH group in 1/3 destabilizes these C-H bonds. The relative positions of $\nu_{\rm OH}$ and $\nu_{\rm CH}$ (sp³) of 1/3 and 2 are in line with their AIM analysis:⁶⁵ transfer of electron density from the OH to the CH_2 group lowers the energy of 3, and at the same time weakens the O-H bond and strengthens the aliphatic C-H bonds. This stabilizing effect is absent in 2. Hence, the IR spectrum of 1/3 deduced in the present work provides direct spectroscopic confirmation of the strongly activating and ortho/para directing nature of the OH group in electrophilic aromatic substitution reactions.⁶⁵

The intermolecular attraction in weakly bound cation⁺-L dimers is dominated by electrostatic and inductive forces.^{26,66} For **5**-L and **1/3**-L, these contributions stabilize H-bonds more than π -bonds, because the protons of the acidic OH groups in **1/3** and **5** carry a large positive partial charge ($q_{\rm H} = 0.67e$ for **1a/3** and 0.72e for **5**). Consequently, **5**-L(**H**) and **1/3**-L(**H**) are the preferred dimer structures (global minima) of **5**-L and **1/3**-L. Similar to the related phenol⁺-L dimers,^{30,48} the π -bound local minimum of **1/3**-L could be detected for L = Ar but not for L = N₂. The π -bound isomer of **5**-L could not be observed so far, and it is not even clear whether **5**-L(π) is a local minimum on the PES. The large L-dependent influence of H-bonding on the IR spectra of C₆H₇O⁺-L requires the variation of L to extrapolate to the O-H bond properties of

isolated C₆H₇O⁺. This is in contrast to the C–H stretch range, in which the IR spectra of C₆H₇O⁺–L (L = Ne, Ar, and N₂) closely resemble that of bare C₆H₇O⁺. The intermolecular interactions in C₆H₇⁺–L are rather different from those in C₆H₇O⁺–L. The H atoms in C₆H₇⁺ carry only small partial charges of $q_{\rm H} = 0.12e$ (sp² hybridization of C) and 0.16e (sp³ hybridization of C).²¹ Thus, in the most stable C₆H₇⁺–L structures, nonpolar ligands L prefer π -bonds to the ring (mainly stabilized by dispersion) over the weaker H-bonds to the CH donors.^{20,21}

5. Concluding Remarks

Structural isomers of isolated protonated phenol ($C_6H_7O^+$) are characterized by IRPD spectroscopy and quantum chemical calculations of their weakly bound $C_6H_7O^+-L$ dimers with L = Ne, Ar, and N₂. The complexes are generated in a supersonic plasma expansion coupled to electron ionization, which predominantly produces two major $C_6H_7O^+$ isomers: the oxonium ion 5 (O-C₆H₇O⁺) and the carbenium ion(s) 1/3 (o/p-C₆H₇O⁺). In contrast, the less stable isomers 2 (m-C₆H₇O⁺) and 4 $(i-C_6H_7O^+)$ are not observed. The most stable 1/3-L and 5-Ldimers feature H-bonds between L and the OH donor groups, which is the preferred ion-ligand recognition pattern between these protonated phenol isomers and nonpolar hydrophobic solvent molecules. Extrapolation to zero solvation interaction (messenger approach) yields reliable experimental vibrational frequencies of bare $O-C_6H_7O^+$ and $o/p-C_6H_7O^+$. The symmetric and antisymmetric O-H stretch vibrations of O-C₆H₇O⁺ are determined as $\nu_{\text{OH,s}} = 3502 \pm 20 \text{ cm}^{-1}$ and $\nu_{\text{OH,as}} = 3557 \pm$ 20 cm⁻¹, and the O–H stretch mode of o/p-C₆H₇O⁺ is derived as $v_{\rm OH} = 3558 \pm 10$ cm⁻¹. Similarly, several C–H stretch modes of o/p-C₆H₇O⁺ are deduced. In general, protonation of phenol induces chemically significant changes of the properties of its OH group. The O-H bonds become longer, weaker, and more acidic. The magnitude of these protonation-induced changes strongly depends on the protonation site and decreases along the series 5 > 1/3 > 2/4. Comparison between the IR spectra of the carbenium ions of $C_6H_7O^+$ and the σ -complex of protonated benzene demonstrates the strongly activating and ortho/para directing nature of the OH group in isolated Wheland intermediates.

In conclusion, the fruitful combination of IR spectroscopy, mass spectrometry, and quantum chemistry is shown to provide a powerful tool to characterize fundamental properties of protonated aromatic molecules (AH⁺) under controlled solvation conditions. Future efforts aim at the investigation of other AH⁺ ions and related reactive intermediates using this successful strategy. Moreover, the present experimental approach can be utilized to probe in a stepwise fashion the sequential solvation of AH⁺ in various solvent types. Eventually, such studies will bridge the gap between the different chemical properties of reactive intermediates in the gas and condensed phase.

Acknowledgment. This study is part of project No. DO 729/ 2-1 of the Deutsche Forschungsgemeinschaft (DFG) and project No. 20-63459.00 of the Swiss National Science Foundation (SNF). O.D. is supported by the DFG via a Heisenberg Fellowship (DO 729/1-1).

⁽⁶⁵⁾ Bader, R. F. W.; Chang, C. J. Phys. Chem. 1989, 93, 5095.

⁽⁶⁶⁾ Dopfer, O. J. Phys. Chem. A 2000, 104, 11693.

⁽⁶⁷⁾ Sheng, Y.; Leszcynski, J. Collect. Czech. Chem. Commun. 2003, 68, 489.

JA0305858